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Abstract—We consider a cognitive radio system with N sec-
ondary user (SU) pairs and a pair of primary users (PU).
The SU power allocation problem is formulated as a capacity
maximisation problem under PU and SU quality of service and
SU peak power constraints. The problem is formulated as a
geometric program, solved for both low- and high- signal-to-
interference-and-noise ratio (SINR) regimes. We present a novel
method of detecting and removing infeasible SU quality of service
constraints from the SU power allocation problem that results
in considerably improved SU performance. Capacity cumulative
distribution functions for Rayleigh fading channels are produced.

I. INTRODUCTION

A large number of papers have appeared on various aspects
of cognitive radio (CR) systems, including fundamental infor-
mation theoretic capacity limits (see, for example, [1–7]). In an
underlay CR system the secondary users (SUs) protect the pri-
mary user (PU) by regulating their transmit power to maintain
the PU receiver interference below a well defined threshold
level. The limits on this received interference level at the PU
receiver can be imposed by an average/peak constraint [2], or
a minimum value for its signal-to-interference-and-noise ratio
(SINR) [4]. Although it imposes an additional requirement that
channel state information (CSI) be available, the advantage
of using an SINR-based PU protection mechanism is that it
removes the constant interference threshold, thus benefiting
the SUs when the PU link is strong.

Power control in conventional wireless networks has been
extensively studied in the literature [8–10]. Power control in
CR systems presents its own unique challenges. In spectrum
sharing applications, SU power must be allocated in a manner
that achieves the goals of the CR system while not adversely
affecting the operation of the PU. Generally the goals of the
CR are not compatible with the goals of the PU; for instance,
increasing SU power to increase SU capacity will tend to
increase interference to the PU. There is a growing body of lit-
erature on power control and capacity of CR systems. In [11],
soft sensing information was used for optimal power control
to maximise capacity of one SU pair coexisting with one PU
pair. The impacts of SU transmission power on the occurrence
of spectrum opportunities and the reliability of opportunity
detection was analysed in [12]. In [13], dynamic programming
was used to develop a power control strategy for one SU pair
under a Markov model of the PU’s spectrum usage. Optimal
power allocation strategies to achieve the ergodic capacity and
the outage capacity of one SU pair coexisting with one PU

pair under different types of power constraints and fading
channel models were obtained in [6]. Power control using
game-theoretic approaches have been proposed in [14, 15].
Power control for CR systems using geometric programming
have been proposed in [16–18]. A minimax approach was used
in [18] to minimise the maximum transmit power for a CR
system coexisting with a PU-Rx. The interference caused by
a PU-Tx to the SU-Rxs was not considered in the problem
formulation of [18]. In [16], a distributed approach was used
for power allocation to maximise SU sum capacity under a
peak interference constraint, but the approach did not include
the interference caused by the PU-Tx in the analysis and the
problem was only analysed for a high SINR scenario.

Convex optimisation methods are widely used in the design
and analysis of communications systems. Many problems that
arise in communications signal processing can be cast or
converted into convex optimisation problems which allow an-
alytical or numerical solutions to be calculated easily [19]. In
[20], several problems for designing optimal dynamic resource
allocation in CR systems are formulated and the key role that
convex optimisation plays in finding the optimal solutions is
demonstrated.

In [21], we formulated the SU power allocation problem as
a capacity maximisation problem under PU and SU quality
of service (QoS) and SU peak power constraints and showed
that it can be solved using geometric programming and convex
optimisation techniques. Unlike in [16–18], where the PU
interference at each SU-Rx is neglected, the effect of the
PU interference is evaluated in [21] by explicitly including
it in the formulations. In this paper we extend the work of
[21] and present a novel method of detecting and removing
infeasible SU quality of service constraints from the SU power
allocation problem that results in considerably improved SU
performance. Solutions for both low and high SINR scenar-
ios are presented. Capacity cumulative distribution functions
(CDFs) for various channel conditions are obtained through
solution of our optimisation problems.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a cognitive radio system
with a single PU and N SU transmitters communicating
simultaneously over a common channel to their respective
receivers. Independent, point-to-point, flat Rayleigh fading
channels are assumed for all links in the network. Let gp =
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Fig. 1. System Model
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denote the instantaneous channel powers of the PU-Tx to
PU-Rx, SU-Tx i to SU-Rx j, PU-Tx to SU-Rx j and SU-
Tx i to PU-Rx links, respectively. For notational convenience
we will denote g

(i)
s = g

(ii)
ss . Furthermore, we assume that

the channel powers for the PU and each of the N SUs are
independent and identically distributed (iid) and are governed
by their corresponding parameters Ωp = E(gp), Ωs = E(gs),
Ωss = E(gss), Ωps = E(gps) and Ωsp = E(gsp). E(·) denotes
the expectation operator.

In our model the SINR at the ith of N SU receivers is given
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and that at the PU receiver by
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where P (i)
s and Pp are the ith SU and PU transmit powers,

respectively, and σ2
s and σ2

p are the additive white Gaussian
noise (AWGN) variance at the ith SU-Rx and PU-Rx, respec-
tively. We also note that that there is a maximum transmit
power constraint, P (i)

s,max, on the SU transmitters which may
be due either to regulatory or hardware limitations. This is
denoted by

P (i)
s ≤ P (i)

s,max.

Additionally, the vector Ps is used to collectively refer to the
set of SU transmit powers, i.e., Ps , [P

(1)
s . . . P

(N)
s ]T .

In a cognitive radio system the secondary users are allowed
to operate as long as they can guarantee a certain level of
quality of service (QoS) to the primary user. Hence, in our
analysis we impose an SINR constraint, γT , at the PU receiver

γp ≥ γT.

The SU sum capacity is given by

CΣ =

N∑
i=1

Ci, (3)

where the individual capacity of the ith SU is given by

Ci = log2

(
1 + γ(i)

s

)
. (4)

III. SU POWER OPTIMISATION

In this section, we aim to find the SU power allocation
such that the SU capacity, CΣ is maximised while maintaining
the PU receiver QoS above the threshold γT, and keeping
within the SU transmit power budget. We may optionally
choose to set minimum SINR thresholds, γ(i)

s,min on the ith SU
receiver. This represents a practical limitation on SU receivers
below which the receivers fail to operate with acceptable
performance. In our formulation we assume that all channel
gains are known which allows us to obtain fundamental limits
on capacity. However, in practise the channel gains would
need to be estimated, hence the capacities obtained in this
paper provide an upper bound. Mathematically we solve the
following suite of optimisation problems.

1) SU Capacity Maximisation with SU QoS Constraints:

maximise
Ps

CΣ

subject to γp ≥ γT (5)

γ(i)
s ≥ γ

(i)
s,min, i = 1, . . . , N

P (i)
s ≤ P (i)

s,max, i = 1, . . . , N

2) SU Capacity Maximisation without SU QoS
Constraints:

maximise
Ps

CΣ

subject to γp ≥ γT (6)

P (i)
s ≤ P (i)

s,max, i = 1, . . . , N

From (3) and (4) it is obvious that maximising the objectives
in (5) and (6) is equivalent to maximising

N∏
i=1

(
1 + γ(i)

s

)
. (7)

Problems (5) and (6) can be modified to minimisation prob-
lems by taking the reciprocal of the objectives. The suite
of optimisation problems are nonlinear and non-convex and
generally hard to solve [19]. We proceed by dividing our
problem into high and low SINR scenarios.

A. High SINR Scenario

When the SINR is high, CΣ can be approximated by

CΣ ≈ log2

(
N∏
i=1

γ(i)
s

)
(8)

and so the optimisation problems (5) and (6) can be written
in minimisation form as

minimise
Ps

N∏
i=1

(
1

γ
(i)
s

)
subject to γp ≥ γT (9)

γ(i)
s ≥ γ
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s ≤ P (i)
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The second constraint in (9) is optional and only included if
SU QoS constraints are required.



Problem (9) falls into a class of optimisation problems
known as geometric programs (GP). A GP is stated as the
following optimisation problem.

minimise f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m (10)
hi(x) = 1, i = 1, . . . , p,

where f0, . . . , fm are in a form known as posynomials and
h1, . . . , hp are referred to as monomials [19]. GPs are nonlin-
ear, non-convex optimisation problems but can be transformed
to convex optimisation problems by a logarithmic change of
variables and by taking the logarithm of the objective and
constraint functions [19]. The transformed problem can then be
solved efficiently in polynomial time by interior point methods
[22].

Through straightforward manipulation of the second and
third constraints, problem (9) can be transformed into the
standard form GP (10). Once in this form, they can be solved
to obtain the optimum SU power allocation.

B. Low SINR Scenario

In the low SINR scenario our capacity maximisation opti-
misation problem is given by

minimise
Ps

N∏
i=1

(
1

1 + γ
(i)
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)
subject to γp ≥ γT (11)

γ(i)
s ≥ γ

(i)
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The second constraint in (11) is optional and only included if
SU QoS constraints are required.

The objective in problem (11) is a ratio of posynomials and
hence is not itself a posynomial. Optimisation problems of
this nature are not GP and are known as Complementary GP
[23, 24]. Complementary GPs are non-convex problems but
can be solved with an iterative technique known as the single
condensation method [23, 24]. In each iteration, the feasible
point computed in the previous iteration is used to approximate
the denominator of the objective monomial. Since a ratio of
posynomial and monomial is a posynomial [19], the resulting
problem is a GP. The procedure is repeated until the solution
converges to an optimum of the original Complementary GP. It
should be noted that convergence to a local or global minimum
is possible. The posynomial is approximated with a monomial
using the geometric-arithmetic mean inequality∑

i

δivi ≥
∏
i

vδii (12)

where vi ≥ 0, δi ≥ 0 and
∑
i δi = 1. If we let ui = δivi, then

(12) can be written as∑
i

ui ≥
∏
i

(
ui
δi

)δi
. (13)

Note that equality in (13) holds when δi = ui/
∑
i ui. The

term on the left hand side of (13) resembles the denominator
of our objective, i.e. a sum of monomials. Hence, if we

let ui(Ps) be the monomial terms of the denominator and
δi = ui(Ps)/

∑
i ui(Ps), then from (13) it is clear that the

denominator can be approximated around a feasible Ps with
a product of monomials. Since the approximation is always
an under-estimator of the original posynomial, minimising
the condensed objective guarantees that the solution moves
towards a minimum of the original objective function.

For completeness, we present an algorithm that can be used
for solving the low SINR capacity maximisation problem [10,
23, 24]:

Algorithm 1 Single Condensation Method

1. Generate a random feasible vector P̃s.
2. Compute the individual monomial terms, ui(P̃s), and the

denominator,
∑
i ui(P̃s), of the objective function using

P̃s.
3. Using results from step 2, compute δi with δi =
ui(P̃s)/

∑
i ui(P̃s).

4. Using δi, form the condensed denominator,∏
i (ui(Ps)/δi)

δi . Note Ps is the optimisation variable.
5. Solve the resulting GP and assign solution to P̃ls, where
l is the loop iteration.

6. Exit loop if ‖P̃ls − P̃l−1
s ‖ ≤ ε, where ε is the error

tolerance.
7. GOTO step 2 with Pls computed in step 5.

IV. SU POWER OPTIMISATION WITH FEASIBILITY
DETECTION

Optimisation problem (5) fails if at least one of the con-
straints is infeasible. This has an adverse effect on capacity
since no SUs are able to access the channel if the QoS
constraint cannot be met for any one (or more) SU. This,
one SU which violates the QoS constraint has the potential of
bringing down the whole system. It is clear that capacity can be
improved by removing the violating SUs from the optimisation
problem. In this section we formulate a method of detecting
and removing the violating SUs from the optimisation prob-
lem. Our method is based on a feasibility detection technique,
known as sum of infeasibilities, that is commonly used in
interior point methods to find a strictly feasible starting point
[19]. We form the problem

minimise
Ps,s

1Ts

subject to
γT

γp
≤ s1 (14)

γ
(i)
s,min

γ
(i)
s

≤ si+1, i = 1, . . . , N

P (i)
s ≤ P (i)

s,max, i = 1, . . . , N

s � 1,

where 1 is a vector of length N + 1 with all entries equal
to one, s ∈ RN+1

++ and � is the elementwise greater than or
equal to comparison operator. For fixed Ps, the optimal values
of s1 and si+1 are max(γT/γp, 1) and max(γ

(i)
s,min/γ

(i)
s , 1)



respectively, so in problem (14), we are minimising the sum
of the infeasibilities. The optimum value of (14) is N + 1
and achieved if and only if the original set of constraints in
(5) is feasible. It follows that all feasible constraints will have
the corresponding element in the vector s equal to one. It
should be noted that if s1 is not equal to one, i.e., the PU
QoS constraint is infeasible, then problem (5) is infeasible
and no SUs are admitted into the channel.

Let I represent the set of feasible SU QoS constraints
determined from the solution of problem (14). We then solve
the following SU power optimisation problem in which the
violating SUs are removed

maximise
Ps

CΣ

subject to γp ≥ γT (15)

γ(i)
s ≥ γ

(i)
s,min, i ∈ I

P (i)
s ≤ P (i)

s,max, i ∈ I
Problem (15) can be solved using methods presented in

Section IV for the low and high SINR scenarios.

V. SIMULATION RESULTS AND DISCUSSION

We now present simulation results of the optimisation prob-
lems formulated in Sections III and IV, specifically evaluating
the CDFs of the resulting capacities. We consider a system
with N = 3 SUs. In all simulations we have set Pp/σ

2
p = 0 dB

and Ωp/σ
2
p = Ωs/σ

2
s = 6.5 dB, where we assume σ2

p = σ2
s .

Simulations for problems (5) and (15) have γ
(i)
s,min = −10

dB, i = 1, . . . , N . For our simulations we parameterise the
wireless channel as follows. The ratio of interference channel
power to desired channel power is denoted by c1 = Ωsp/Ωs

and c2 = Ωss/Ωs parametrises the relative channel power of
desired to interfering SU links. We consider the following
three channel scenarios

1) Scenario A: Low Interference
In this scenario c1 = c2 = 0.1 which corresponds
to each receiver being approximately 3 times (assum-
ing 1/d2 path loss) further away from the interfering
transmitters than its own transmitter. This results in low
interference between all users, thus making the PU QoS
constraint easy to satisfy.

2) Scenario B: High Interference
In this scenario c1 = c2 = 0.9 which corresponds to
each receiver being approximately the same distance
from all transmitters. This results in high interference
among all users, thus making the PU QoS constraint
difficult to satisfy.

3) Scenario C: Low PU and High SU Interference
In this scenario c1 = 0.1 and c2 = 0.9. Here the
PU experiences low interference from the SUs since
it is approximately 3 times further away from SU-Txs
than the PU-Tx. As a result, the PU QoS constraint is
easily satisfied. However, SU to SU interference is very
prominent.

Results of our proposed methods are compared against the
equal power allocation method and a power profile method

analogous to the “poor man’s waterfilling” method [25] where
we allocate power proportionally to g

(i)
s /g

(i)
sp . We refer to

these methods as ad hoc allocation methods. Note that the ad
hoc allocation methods do not impose a minimum SU QoS
requirement, hence a fair comparison is only possible against
problems (6) and (15). Figures 2–4 show the SU sum capacity
CDF obtained from optimisation problems (5), (6) and (15) for
the three channel conditions with γT = 2 dB.

Figure 2 shows the SU sum capacity CDF of Scenario
A along with results of ad hoc allocation methods. Due to
PU and SU QoS requirements of problem (5), we observe
that around 50% of the time no SUs are able to access the
channel. When problem (5) is resolved using the feasibility
detection method—problem (15)—a marked improvement in
performance is observed. The SU blocking probability drops
to around 30% and similar performance to problem (6) is
achieved. Furthermore, we see that the ad hoc allocation
methods are outperformed by the GP methods.

Figure 3 shows the SU sum capacity CDF of Scenario
B along with results of ad hoc allocation methods. Due
to PU and SU QoS requirements of problem (5), around
80% of the time no SUs are able to access the channel.
Again, when problem (5) is resolved using the feasibility
detection method—problem (15)—a marked improvement in
performance is observed. The SU blocking probability drops
to around 50%. Due to the PU QoS requirements of problem
(6), no SUs are able to transmit 47% of the time. We observe
again that the ad hoc allocation methods are outperformed by
the GP methods.

Figure 4 shows the SU sum capacity CDF of Scenario
C along with results of ad hoc allocation methods. Due to
PU and SU QoS requirements of problem (5), around 57%
of the time no SUs are able to access the channel. Once
again, when problem (5) is resolved using the feasibility
detection method—problem (15)—performance is greatly im-
proved. The SU blocking probability drops to around 35%.
Due to the PU QoS requirements of problem (6), no SUs are
able to transmit 30% of the time. We also observe that again
the ad hoc allocation methods are outperformed by the GP
methods.

VI. CONCLUSIONS

In this paper, we have formulated the SU power allocation
problem in a CR system as a geometric program and obtained
capacity CDFs in various channel conditions. We have in-
cluded the effect of PU transmission in our formulations and
studied the problem in both high and low SINR scenarios.
More importantly, we have presented a method of detecting
and removing infeasible SU quality of service constraints
from the SU power allocation problem and have shown that
applying this method results in considerably improved SU
performance.
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